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The iterative-multi-scale-finite-volume (IMSFV) procedure is applied as an efficient solver
for the pressure Poisson equation arising in numerical methods for the simulation of
incompressible flows with the immersed-interface method (IIM). Motivated by the
requirements of the specific IIM implementation, a modified version of the IMSFV algo-
rithm is presented to allow the solution of problems, in which the varying coefficient of
the elliptic equation (e.g. the permeability of the medium in the context of the simulation
of flows in porous media) varies over several orders of magnitude or even becomes zero
within the integration domain. Furthermore, a strategy is proposed to incorporate the iter-
ative procedure needed by the IIM to converge out constraints at immersed boundaries
into the iterative IMSFV cycle. No significant deterioration of performance of the IMSFV
method is observed with respect to cases, in which no iterative improvement of the bound-
ary conditions is considered.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The IMSFV procedure by Hajibeygi et al. [1] was developed in the context of the simulation of flows in porous media for
the solution of the elliptic problem
@

@xj
k
@p
@xj

� �
¼ R; ð1Þ
where p; k and R are the pressure, the permeability of the medium and a distributed mass source, respectively (we use the
Einstein convention for summation over repeated indices). If k varies rapidly in space and spans a wide range of values,
numerical handling of Eq. (1) becomes challenging.

The origin of the IMSFV method traces back to the work by Hou and Wu [2] in the Finite-Element context (multi-scale-fi-
nite-element, MSFE). Exploiting expected scale-separation features in the permeability field, only large scales of the solution
are resolved on a correspondingly coarse grid, while fine scale features of the k-field are accounted for in the definition of the
basis functions for the finite-element approach. The latter are computed as well resolved numerical solutions of the original
elliptic problem on small subdomains with properly approximated boundary conditions. Jenny et al. [3] preserved the basis-
function concept but considered a finite-volume discretization (multi-scale-finite-volume, MSFV), whereby the derivation of
the coarse-grid problem can still be interpreted as a weak non-Galerkin formulation of the governing equation. Continuing
this work Lunati and Jenny [4] reconstructed the fine-grid solution superposing not only basis functions but also a second
set of locally defined functions (correction functions), which account for the fine-scale features of non-homogeneities (i.e.
. All rights reserved.
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source terms and non-homogeneous boundary conditions). In a further step, a divergence-free vector field is computed to
approximate the Darcy velocity uj ¼ �k@p=@xj (conservative flow field).

The idea of improving the solution iteratively was introduced by Durlofwsky et al. [5] in a formulation similar to that by
Jenny et al. [3]. Before starting a new iteration, a fine-scale solution is reconstructed and used to define improved boundary
conditions for a new set of basis functions. This leads to an improvement in the results, but convergence at the fine-grid level
is not achieved. Following an alternative approach, Hajibeygi et al. [1] proposed the iterative-multi-scale-finite-volume
(IMSFV) procedure as a generalization of the MSFV method. The fine scale solution is reconstructed by superimposing both
basis and correction functions and used to iteratively improve the approximate boundary conditions for the latter. In addi-
tion line relaxation is applied to smooth the fine-grid solution, which is determinant to ensure stability and enhance con-
vergence. Fast convergence to the exact fine-grid solution was achieved for a variety of problems, but performance decay
was observed for cases in which the permeability varies over several orders of magnitude (e.g. the SPE10 test case in [1]).

The IIM approach by LeVeque and Li [6] can be interpreted as a refinement of the immersed-boundary method (IBM) de-
vised by Peskin [7] for the simulation of incompressible flows around complex geometries using Cartesian grids. In IBM the
influence of the immersed body is modeled by means of concentrated volume forces enforcing boundary conditions at the
body surface. Successive improvements in the definition of the volume force were introduced by Goldstein et al. [8] and Fad-
lun et al. [9], whereby the latter are able to exactly enforce no-slip conditions for the velocity at solid walls. LeVeque and Li
[6] observed that discontinuities in the flow quantities or in their derivatives necessarily occur across immersed boundaries
and should be accounted for when defining discretization stencils crossing them. This led to the development of the IIM, for
which one possible implementation in the Navier–Stokes context was provided by Linnick and Fasel [10] using finite differ-
ences for spatial discretization. Jumps across immersed boundaries are computed by means of one-sided differences and
fourth-order accuracy is achieved for a stream-function-vorticity formulation of the Navier–Stokes equations. Also consis-
tent with the requirements inspiring IIM is the primitive-variable approach by Peller et al. [11], where values for the velocity
vector are extrapolated from nodes lying inside the flow field to nodes within the solid body, which are involved in stencils
crossing the boundary (ghost nodes). In this way, the solution is smoothly prolonged into the body and no additional cor-
rection is needed for the considered second-order finite-volume discretization.

All IIM approaches, and also the procedure by Fadlun et al. [9], disrupt the regular structure of the Poisson problem to be
solved either for the stream-function in [10] or for the pressure in all remaining procedures. This is a relevant issue, since the
solution of the Poisson equation is by far the most costly step in all numerical procedures for incompressible flows, and the
possibility of using highly efficient solvers on simple Cartesian grids might be one of the main advantages of IBM and IIM
with respect to other approaches. Nevertheless little is said on this topic in the available literature. Fadlun et al. [9] suppress
anomalies in the Poisson equation by tolerating a small additional error within the fractional-step method, which they use
for time integration. Peller et al. [11] and Linnick and Fasel [10] use a single-grid SIP-method and an ILLU-based multi-grid,
respectively. In both cases the preconditioner used to compute the pressure correction (or the stream-function correction)
only considers a standard form of the Poisson equation, ignoring the presence of immersed bodies. Convergence to the solu-
tion fulfilling the boundary conditions at immersed boundaries is achieved over an iteration loop with alternating compu-
tation of pressure and velocity (or vorticity and stream function).

The main concern of this paper is to show that the IMSFV procedure can be adapted to efficiently solve the pressure Pois-
son equation as resulting from the IIM formulation by Peller et al. [11], which we prefer since it is not limited to the 2-d case
like that by Linnick and Fasel [10]. Differently from previously used Poisson solvers, IMSFV provides a preconditioner, which
approximatively accounts for boundary conditions at immersed boundaries. An iterative update of the velocity in the neigh-
bourhood of the immersed boundary is still necessary, but the overall performance of procedure is significantly improved.
Indeed, the importance of imposing accurate boundary conditions when computing the pressure correction within iterative
procedures has been pointed out also by Mark and van Wachem [12].

The paper is structured as follows. The finite-volume discretization of the Navier–Stokes equations is presented in
Section 2, where also the IIM implementation of immersed boundaries is described. We start Section 3 with showing that,
if an iterative loop is introduced to evaluate velocities at ghost nodes, the Poisson equation for the pressure may be reduced
to an elliptic problem of the kind (1), where immersed bodies appear as impermeable regions. The original IMSFV procedure
and the modifications needed to handle problems involving impermeable regions are presented in Sections 3.1 and 3.2,
respectively. Section 3.3 describes how the IMSFV method may be combined with the iterative handling at ghost nodes. Re-
sults from numerical tests are presented in Section 4 and concluding remarks are given in Section 5. Since the considered
Navier–Stokes application requires high accuracy in the solution of the pressure equation, only the linear-solver capabilities
of the IMSFV procedure is considered in this paper. Its capability of providing good approximations of the solution after one
single iteration is not discussed.
2. Discretization of the Navier–Stokes equations

The numerical procedure is based on a primitive-variable formulation of the incompressible Navier–Stokes equations
with finite-volume discretization on staggered grids [13]. The standard fourth-order Runge–Kutta scheme is used for
time-integration and the immersed-boundary implementation reproduces that by Peller et al. [11]. We first present the dis-
cretized problem ignoring immersed boundaries, and then detail the implementation of the latter.
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2.1. Governing equations and grid definition

Let x ¼ ðx1 x2 z3ÞT 2 R3 be the coordinate vector in a 3-d Cartesian coordinate system and u ¼ ðu1 u2 u3ÞT 2 R3 the velocity
in the same reference system.We consider the rectangular integration domain
X ¼ fx : ai < xi < big; i ¼ 1;2;3; ai; bi 2 R ð2Þ
and allow an arbitrarily shaped open portion Xb � X to be occupied by solid immersed bodies. The flow field has to be com-
puted only within the region Xf ¼ X n ðXb [ @XbÞ, which is assumed to be simply connected. The notation @X is used here
and in the following to identify the boundary of a set X.

The discrete problem is derived from the momentum equation in conservative form
@ui

@t
þ @uiuj

@xj
¼ � @p

@xi
þ 1

Re
@2ui

@xj@xj
; 8t; 8x 2 Xf ; i ¼ 1;2;3 ð3aÞ
and the continuity equation
@ui

@xi
¼ 0; 8t; 8x 2 Xf : ð3bÞ
Dirichlet boundary conditions
ui ¼ �ui; 8t; 8x 2 @Xf ¼ @X [ @Xb; i ¼ 1;2;3 ð4Þ
are imposed at outer and inner boundaries, �ui being prescribed functions, which fulfill the compatibility condition
Z
@X[@Xb

�uinidS ¼ 0; 8t; ð5Þ
where n is the unit outwards-pointing normal on @X [ @Xb. An extrapolation procedure may also be applied at outflow
boundaries to evaluate the value of �ui on the basis of the solution at the previous time step.

Given the grid spacing hi ¼ ðbi � aiÞ=Ni; Ni 2 N, the index triplet a ¼ ða1;a2;a3Þ;aj ¼ nj=2 for some nj 2 Z, identifies the
grid node located at
x ¼ xa ¼ ða1h1 a2h2 a3h3ÞT ð6Þ
and all quantities evaluated at that node (e.g. pa stands for the pressure at xa while ui;a is the ith velocity component at the
same position). Sum and multiplication by a scalar are defined for index triplets analogously to the vector-space operations
in R3 and a partial order is given by setting a 6 b, if ai 6 bi 8i. We also define the triplets
d1 ¼
1
2
; 0; 0

� �
; d2 ¼ 0;

1
2
; 0

� �
; d3 ¼ 0; 0;

1
2

� �
:

A set G of triplets is said to be a grid, if the following properties are fulfilled: (i) xa 2 ðX [ @XÞ; 8a 2 G; (ii) if a; b 2 G and
ðcj ¼ aj _ cj ¼ bjÞ; 8j, then c 2 G. The boundary set @G is the set of triplets identifying the projections of nodes of G onto
the boundary @X.

The pressure p and the velocity components ui are defined on the staggered grids P and U i [ @U i, respectively, with
P ¼ a : aj 2 Zþ 1
2
; 8j; xa 2 X

� �
; ð7aÞ

U i ¼ a : ai 2 Z; aj 2 Zþ 1
2
; 8j–i; xa 2 X

� �
: ð7bÞ
The relative position of grid nodes for p and ui in the 2-d case is sketched in Fig. 1. The control volume or cell Xa associated to
the node a is defined as the rectangular domain
Xa ¼ x : aj �
1
2

� �
hj 6 xj 6 aj þ

1
2

� �
hj; 8j

� �
\X: ð8Þ
The symbols VðXaÞ and Aa;i denote the volume of Xa and the area of its face normal to the xi-axis, respectively.

2.2. Finite-volume discretization

Partial derivatives at nodes lying in the inner of the integration domain are evaluated by means of the second-order cen-
tral finite-difference scheme
@f
@xj

� �
a
¼

faþdj
� fa�dj

hj
: ð9Þ



Fig. 1. Staggered grids for p (circle) u1 (horizontal arrows) and u2 (vertical arrows).
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Volume integrals over cells Xa and surface integrals over cell faces S are defined as
Z
Xa

fdV ¼ faVðXaÞ;
Z

S
fdS ¼ fbAk;b; ð10Þ
where k is the direction normal to S and b is the centroid of S. Due to the additivity of the integral this defines integral over
arbitrary unions of cells and faces. We also point out that, for the given definitions of discrete derivation and integration, the
Gauss theorem continues to be valid also in the discrete case. Consequently the solvability condition (5) preserves its mean-
ing also for the discretized problem, if the integral on the left-hand side is interpreted according to Eq. (10) and @X [ @Xb is
assumed to be equal to the boundary of [a2Pf

ðXa [ @XaÞ.
The discretized form of the Navier–Stokes equations is presented considering the explicit Euler scheme for time integra-

tion. Generalization to the Runge–Kutta scheme is straightforward. Let Dt > 0 be the time step and let the superscript ðlÞ
identify quantities evaluated at the time t ¼ l � Dt. Eq. (3a) can be written in discretized form as
uðlþ1Þ
i;a � uðlÞi;a

Dt
VðXaÞ ¼ �PðlÞi;a þ XðlÞi;a þ Y ðlÞi;a; 8a 2 U i; ð11Þ
where Pi;a; Xi;a and Yi;a represent the contributions of the pressure gradient, of the convective term and of the viscous term,
respectively, to the momentum balance in the cell Xa. The Dirichlet condition (4) assumes the form
uðlþ1Þ
i;a ¼ �uðlþ1Þ

i;a ; 8a 2 @U i; ð12Þ
whereby the values �uðlþ1Þ
i;a may be slightly modified on some portion of @X (typically at the outflow) in order to fulfill the dis-

crete counterpart of the compatibility condition (5). We omit the time-step superscript, indicate with n the outwards-point-
ing normal at the cell boundaries and set
Pi;a ¼
Z
@Xa

pnidS ¼ ðpaþdi
� pa�di

ÞAi;a; ð13aÞ

Xi;a ¼
Z
@Xa

uiujnjdS ¼ ðui;aþdj
uj;aþdj

� ui;a�dj
uj;a�dj

ÞAj;a; ð13bÞ

Yi;a ¼
Z
@Xa

1
Re

@ui

@xj
njdS ¼ 1

Re
@ui

@xj

� �
aþdj

� @ui

@xj

� �
a�dj

" #
Aj;a: ð13cÞ
The evaluation of Pi;a is straightforward, since ða� diÞ 2 P whenever a 2 U i. Second-order central interpolation is used to
evaluate both the convecting velocity uj and the convected component ui at xa�dj

, as appearing in Xi;a:
uj;a�dj
¼

uj;a�djþdi
þ uj;a�dj�di

2
; ui;a�dj

¼
ui;a�djþdj

þ ui;a�dj�dj

2
: ð14Þ
Finally, partial derivatives in Yi;a are computed according to Eq. (9), except at nodes on @X, where second-order skew differ-
ences are used. Second order accuracy is thus granted by the discretization of all terms. If needed, e.g. for higher Reynolds
numbers, upwinding [14] might be introduced in the discretization of the convective term Xi;a.

A system of equations for pðlÞa is derived imposing the continuity Eq. (3b) in discrete form at all nodes a 2 P for the time
step ðlþ 1Þ. In this sense pðlÞa is rather a Lagrangian multiplier for the problem (3a) constrained by (3b) than an estimation of
the actual physical pressure, from which it differs by terms of first order in Dt [15,16]. The finite-volume formulation of
Eq. (3b) provides
Z

@Xa

uðlþ1Þ
j njdS ¼ uðlþ1Þ

j;aþdj
� uðlþ1Þ

j;a�dj

� �
Aj;a ¼ 0; 8a 2 P: ð15Þ
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Since a� dj 2 U j [ @U j whenever a 2 P, we may eliminate uðlþ1Þ
j;a�dj

in (15) by means of Eqs. (11) and (12), obtaining the desired
set of equations:
@2p
@xj@xj

 !ðlÞ
a

¼ 1
VðXaÞ

@Xj

@xj

� �ðlÞ
a
þ @Yj

@xj

� �ðlÞ
a

" #
þ 1

Dt
@uj

@xj

� �ðlÞ
a
; 8a 2 P; ð16aÞ

@p
@xk

� �ðlÞ
a
¼ 1

VðXaÞ
XðlÞk;a þ Y ðlÞk;a

h i
�

�uðlþ1Þ
k;a � �uðlÞk;a

Dt
; 8a 2 @P; ð16bÞ
where xk is the direction normal to the boundary at each point a 2 @P and the values �uðlÞk;a and �uðlþ1Þ
k;a in (16b) are the assigned

right-hand side of Eq. (12). The derivatives ð@p=@xjÞa on the left-hand side of (16a) can be evaluated according to Eq. (9) for all
a 2 ðP � djÞ n @P. Since furthermore their values at nodes a 2 @P in the boundary-normal direction xk are assigned by Eq.
(16b), the second derivatives ð@2p=@xj@xjÞa can be computed for a 2 P, by applying the discrete derivative operator a second
time.

The terms XðlÞk;a and Y ðlÞk;a; a 2 @P, in Eq. (16) are to some extent fictive. They do not appear in Eqs. (11) or (12) and cancel
out with the corresponding terms in the derivatives of Xj and Yj on the right-hand side of (16a) as soon as Eq. (16b) is used to
eliminate @p=@xj at boundary points a 2 @P from the Laplacian on the left-hand side of (16a). They have been introduced
only to preserve the standard form of Eq. (16a) also at nodes close to the boundary, and may as well be assumed to be zero.
That being said, we notice that the system (16) is equivalent to a discretized Poisson problem with Neumann boundary con-
ditions. It is singular and admits solutions, which are then determined up to an additive constant, if and only if the discrete
counterpart of Eq. (5) is fulfilled. Second order accuracy with respect to the spatial discretization is achieved for the momen-
tum equation.

2.3. Immersed-boundary implementation

Immersed boundaries are implemented as in the IIM approach by Peller et al. [11] by extrapolating the velocity to ghost
nodes inside the body. This is done using fourth-order extrapolation stencils, which take into account the Dirichlet condition
(4) on @Xb and values of ui at three further grid nodes in the flow field. For stability reasons the point next to the boundary
may be skipped, if it is too close to the boundary.

We define subsets of the grids P and U i, which are needed to detail the different treatment of nodes inside and outside of
the solid bodies:
Pf ¼ a 2 P : xa 2 ðXf [ @Xf Þ
� 	

; ð17aÞ
Pb ¼ P n Pf ; ð17bÞ
U i;f ¼ a 2 U i : xa 2 Xf

� 	
; ð17cÞ

U i;b ¼ U i n U i;f ; ð17dÞ
I i;P ¼ a 2 U i : 9m 2 f�1g with ðaþ mdiÞ 2 Pf ^ ða� mdiÞ 2 Pb

� 	
; ð17eÞ

I i;U ¼ a 2 U i;b : 9j; 9m 2 f�1g with ðaþ 2mdjÞ 2 U i;f
� 	

: ð17fÞ
The momentum Eq. (11) is evaluated only at nodes a 2 U i;f n I i;P within the flow field. Nodes a 2 I i;U lie within the solid body
but are needed to evaluate the right-hand side of the momentum Eq. (11) (hence the notation I i;U) at some node in U i;f n I i;P

(cf. Fig. 2). On the other hand, nodes a 2 I i;P are involved in the evaluation of the continuity equation, i.e. of the pressure
Poisson Eq. (16b) (hence the notation I i;P), which they enter through the boundary condition at immersed boundaries
(see Eq. (18) below). Nodes a 2 I i;P may lie either within the body or within the flow region (cf. Fig. 3). However, also in
the latter case, interpolation is used to evaluate ui;a in place of imposing (11), since no pressure node is available on the side
of a occupied by the body and the computation of the pressure gradient would be numerically critical. The sets I i;P and I i;U

are in general not disjoint.
As a general rule, ui is extrapolated along the grid line on which the stencil requiring it operates, e.g. in direction xj for the

finite-difference stencil in (9) or in direction xi and xj for the first and second interpolation stencils in (14), respectively (see
Figs. 2(a)–(c) and 3). If this is not possible, extrapolation in direction xi, parallel to the extrapolated velocity component ui, is
used (see Fig. 2(d)). Since nodes in a 2 I i;P are needed in connection with the computation of the derivative @ui=@xi from the
continuity equation, the extrapolation direction at such nodes is always xi, without exceptions.

The discrete Poisson Eq. (16a) for the pressure is imposed only at nodes a 2 Pf , while the boundary conditions
@p
@xi

� �ðlÞ
a
¼ 1

VðXaÞ
XðlÞi;a þ Y ðlÞi;a

h i
�

uðlþ1Þ
i;a � uðlÞi;a

Dt
; 8a 2 I i;P; ð18Þ
are set to take account of immersed boundaries. Also here values XðlÞi;a and Y ðlÞi;a are fictive and cancel out as soon as Eq. (18) is
used to eliminate the pressure gradient in a 2 I i;P from the Laplacian in Eq. (16a). The term uðlþ1Þ

i;a on the right-hand side of Eq.
(18) has to be evaluated by extrapolation on the basis of some uðlþ1Þ

i;b at neighbouring nodes b 2 U i;f , which in turn depend on
the solution for pðlÞ through the momentum Eq. (11). If directly enforced, Eq. (18) would massively modify the structure of



Fig. 2. Relative positions of immersed boundaries and ghost nodes b 2 I i;U (filled circle). The evaluation of the momentum equation for uj in a (cross)
requires the value of ui at b to evaluate the same quantity (or its derivative) in c (empty circle). Squares correspond to nodes included in the extrapolation
stencil. Empty squares are nodes in U i;f , filled squares are boundary values assigned by (4).

Fig. 3. Relative positions of immersed boundaries and ghost nodes b 2 I i;P (filled circle). The evaluation of the pressure Poisson equation in a (cross)
requires the value of ui at b. Squares correspond to nodes included in the extrapolation stencil. Empty squares are nodes in U i;f , filled squares are boundary
values assigned by (4).
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the linear system (16), making impossible the application of the IMSFV procedure, or of any other standard solver. Therefore,
uðlþ1Þ

i;a is rather shifted to the right-hand side of the system, i.e. it is first evaluated approximatively and then improved iter-
atively (Section 3.3).

3. Computation of the pressure field with the IMSFV procedure

The linear system (16) for the discrete pressure-Poisson equation with the additional constraint (18) at immersed bound-
aries can be restated in the form
@

@xj
k
@p
@xj

� �
 �ðlÞ
a
¼ Ra; 8a 2 P; ð19aÞ

k
@p
@xk

� �ðlÞ
a
¼ qa 8a 2 @P; ð19bÞ
with
kb ¼
1; for b 2 U i;f n I i;P;

0; for b 2 U i;b [ I i;P:

(
ð20Þ
Thereby, the term Ra is zero for a 2 Pb and equal to the right-hand side of Eq. (16) for the nodes a 2 Pf which are not neigh-
bours of nodes in I i;P . If on the contrary a 2 Pf and b ¼ ðaþ djÞ 2 I i;P or b ¼ ða� djÞ 2 I i;P , then Ra also contains the contri-
bution of the gradient ð@p=@xjÞb, assigned by Eq. (18), to the Laplacian of p on the left-hand side of Eq. (16) (remember that
uðlþ1Þ

b in Eq. (18) is treated iteratively and notice that the mentioned contribution does not appear on the left-hand side of Eq.
(19a), since kb ¼ 0 for b 2 I i;P). Eq. (19b) is simply a restatement of the Neumann condition (16b) at the outer boundaries of
the integration domain and the solvability condition for the system (19) is
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Z
X

RdV ¼
Z
@X

qdS; ð21Þ
which is true up to discretization errors if Eq. (5) is verified. We point out that boundary conditions at immersed boundaries
are correctly accounted for in (19) but enter the system only through the coefficients k and the right-hand side R.

The reformulation (19) of the discrete pressure Poisson equation highlights its analogy to the Eq. (1) governing flows in
porous media, for the solution of which the IMSFV procedure [1] has been developed. In the rest of this section, we first pres-
ent the original IMSFV procedure, then introduce the modifications needed to handle problems in which the permeability
becomes zero as in (19) and (20) (impermeable regions) and finally discuss how the iterative enforcement of the boundary
condition (18) can be efficiently integrated into the iterative loop of the IMSFV procedure. We skip the so called conservative
reconstruction from the original IMSFV implementation [3,4,1], since it looses relevance if the iterative procedure is well
converged. For technical reasons, we also slightly modify the problem setting ka ¼ Kb > 0; 8a 2 U i;b [ I i;P , in Eq. (20) and
choosing the constant Kb to be smaller than machine accuracy (typically Kb ¼ 10�20). The time index ðlÞ is omitted in this
section and superscripts ½n� in square brackets are used to identify the solution after n iteration steps.

3.1. The IMSFV procedure

Additional grids and partitions of the integration domain into subdomains (coarse and dual cells) have to be introduced in
order to implement the IMSFV procedure. We define the following terminology. Two triplets a and b belonging to the same
grid G are said to be diagonally opposed if a < b and b 6 c for all c 2 Gwith a < c. A subset of G, which is itself a grid, is said to
be a subgrid of G.

The coarse grid �P and the dual grid ~P (see Fig. 4) are subgrids of P and
O ¼ a : aj 2 Z 8j; xa 2 X
� 	

; ð22Þ
respectively, whereby ~P contains its boundary. Let also P be the smallest grid containing P [ @P. Dual and coarse grids are
staggered with respect to each other, i.e. if a1;a2 2 P are diagonally opposite and a1 < a2, then there exists exactly one b 2 ~P,
so that a1 6 b 6 a2. In general, except when b 2 @ ~P, strict inequality holds and xb is close to or coincident with the midpoint
between xa1 and xa2 . Analogously, if a1;a2 2 ~P are diagonally opposite and a1 < a2, there exists exactly one b 2 P, so that
a1 < b < a2. The original grid P will also be referred to as fine grid.

Let a1;a2 2 ~P be diagonally opposite, with a1 < a2, and let b be the unique element of �P satisfying a1 < b < a2, then the
coarse cell Xb is defined as
Xb ¼
[

c2P;a1<c<a2

Xc: ð23Þ
Analogously, the dual cell eXb is given by
eXb ¼
[

c2P;a16c6a2

Xc; ð24Þ
(a) Coarse (solid lines) and dual grid (dashed lines); bold lines highlight the coarse cell �Xa (solid) and the dual cell ~Xb (dashed). Nodes in �P are
by crosses, nodes in ~P by circles; (b) enlargement of the corner region of coarse (top) and dual cells (bottom). Thin lines mark the boundaries of fine-

ls, thick lines the boundaries of coarse and dual cells, respectively. Notice the overlapping of the dual cells in the lower picture. Nodes in P are the
d-cell centroids.
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where a1;a2 2 P are diagonally opposite and b is the only element of ~P with a1 6 b 6 a2. Notice that different coarse cells
share at most faces of their boundary. On the contrary, dual cells share fine-grid cells adjacent to common corners, edges and
faces.

Local grids �Pa and ~Pa and their boundary sets @ �Pa and @ ~Pa are defined for coarse and dual cells Xa and eXa as P and @P for
the integration domain X. For example, �Pa is the set of elements of P contained in the coarse cell
Xað�Pa ¼ b 2 P : Xb � Xa

n o
Þ, while @ �Pa contains the projection of elements of �Pa onto its faces. Finally, for a 2 ~P and

b 2 ~Pa, we define
1 We
Ba;b ¼ j : 9m 2 f�1g with ðbþ 2mdjÞ R ~Pa

h i
^ ½ðbþ 2mdjÞ 2 P�

n o
: ð25Þ
The set Ba;b is empty for nodes b 2 ~Pa, which are not adjacent to the boundary @ eXa of the dual cell eXa, and contains the indi-
ces j of the directions normal to the adjacent dual-cell faces otherwise. As an exception, the direction j is not contained in Ba;b,
if the cell face normal to it lies on @X.

The solution p½nþ1� after nþ 1 iteration steps is obtained by superposing the basis functions Ua, a 2 �P, and the correction
function W, and applying the line-relaxation operator S a prescribed number ns of times1:
p0 ¼
X
a2�P

p0aUa þW; ð26aÞ

p½nþ1� ¼ Sns ðp0Þ; ð26bÞ
Basis functions Ua are zero outside of the eight dual cells (4 in 2-d) sharing the node a 2 �P as a corner and are computed only
once before starting the actual computation. On the contrary, the correction function and the coefficients p0a have to be
recomputed at each iteration step.

Each basis function Ua; a 2 �P, is computed by solving independent problems on each of the dual cells forming its support.
Let eXb; b 2 ~P, be contained in the support of Ua. The restriction of Ua to eXb is then determined by
X

j2BC
b;c

@

@xj
k
@Ua

@xj

� �
 �
c
¼ 0; 8c 2 ~Pb n �P; ð27aÞ

Ua
� 


c ¼ 0; 8c 2 ~Pb \ �P; c–a; ð27bÞ

Ua
� 


c ¼ 1; c ¼ a; ð27cÞ

k
@Ua

@xk

� �
c
¼ 0; 8c 2 @ ~Pb \ @P; ð27dÞ
where BC
b;c ¼ f1;2;3g n Bb;c and k in Eq. (27d) is the direction normal to @X at the corresponding boundary node. Similarly, the

restriction of the correction function W to the any dual cell eXa;a 2 ~P, is determined by
X
j2BC

a;c

@

@xj
k
@W
@xj

� �
 �
c
þ
X
j2Ba;c

@

@xj
k
@p½n�

@xj

� �
 �
c
¼ Rc; 8c 2 ~Pa n �P; ð28aÞ

ðWÞc ¼ 0; 8c 2 ~Pa \ �P; ð28bÞ

k
@W
@xk

� �
c
¼ qc; 8c 2 @ ~Pa \ @P; ð28cÞ
where BC
a;c and k are defined as above. Finally, the coarse-grid problem (coarse system) assigning the coefficients p0a, a 2 �P in

Eq. (26a) is derived as a weak formulation of the original problem (19) over each coarse cell by requiring
Z
Xa

@

@xj
k
@p0

@xj

� �
dV ¼

Z
@Xa

k
@p0

@xj
njdS ¼

Z
Xa

RdV ;8a 2 �P; ð29Þ
n being the unit outwards-pointing normal vector on @Xa. Substituting the ansatz (26a) into Eq. (29) one obtains
X
b2�P

p0b

Z
Xa

@

@xj
k
@Ub

@xj

� �
dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cab

¼ �
Z

Xa

@

@xj
k
@W
@xj

� �
dV þ

Z
Xa

RdV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Qa

; 8a 2 �P: ð30Þ
Eqs. (27a) and (28a) enforce the Poisson equation (respectively in its homogeneous and inhomogeneous form) exactly in the
inner part of each dual cell, but only approximatively at nodes adjacent to dual-cell faces not lying on @X. At such nodes,
derivatives normal to the dual-cell boundary are ignored (Eq. (27a)) or estimated a priori on the basis of the last available
slightly deviate from the notation used in [1], where Ua and W are expressed as superposition of their restrictions to dual cells.
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iteration step (Eq. (28a)). This way, coupling between different dual cells is suppressed, and localization of the problems for
Ua and W is achieved. On the other hand, the coarse system (30) provides the global coupling needed to avoid performance
decay when the dimensions of the problem are increased. Indeed, as highlighted by Hajibeygi et al. [1], the IMSFV procedure
can be interpreted as a two-level multi-grid procedure, whereby restriction (from P to �P, Eq. (30)) and prolongation (from �P
to P, Eq. (26a)) are carried out by means of the basis functions Ua. The relevance of the line relaxation operator Sns in Eq.
(26b) for the stability and the efficiency of the IMSFV procedure has also been demonstrated by Hajibeygi et al. [1].

The unique solvability of each localized problem for basis and correction functions can be inferred as follows, if k–0
everywhere in X. Due to the neglect or approximate estimation of derivatives across the boundary, the solution at node-rows
corresponding to the dual-cell edges is uniquely determined by 1-d elliptic problems along the edge with Dirichlet condi-
tions at the corners. Two-dimensional problems with Dirichlet boundary conditions provided by the previously computed
solution on the edges are then assigned at dual-cell faces and, in turn, provide Dirichlet conditions for the 3-d problems
determining the solution inside each dual cell. Exceptions are given at corners, edges and faces lying on @X, where the ori-
ginal Neumann conditions are set, but this does not compromise the conclusions. Notice that, since the restriction of basis
and correction functions to nodes next to dual-cell edges and faces are always determined by the same 1-d and 2-d prob-
lems, no contradiction is found, even if such nodes are shared by different dual cells and each basis or correction function
is redundantly determined there by different localized problems (one for each dual cell sharing the specific edge or face).

Let now Nc be the dimension of the system matrix C ¼ ½Cab� for the coarse system (30). If p0a ¼ c 2 R; 8a 2 �P, is the con-
stant distribution on the coarse grid, the corresponding superposition of basis functions according to the first sum on the
right-hand side of Eq. (26a) is constant on the fine grid P and the left-hand side of the coarse system (30) is zero. This shows
that constant distributions on �P lie in the null space of C and consequently also that rankðCÞ 6 Nc � 1. If the permeability k is
constant and if coarse cells have moderate aspect ratio, C is diagonally dominant [17] and therefore rankðCÞP Nc � 1. Con-
tinuity considerations allow then to conclude that the same is true also when k varies moderately. This is the case for the
applications we are interested in, so that in the following we may always assume rankðCÞ ¼ Nc � 1. Numerical evidence pro-
vided by Hajibeygi et al. [1] shows that the same may still be true also for cases with large cell aspect ratios or strongly vary-
ing permeability.

Since each linear combination of basis functions fulfills the homogeneous Neumann conditions (27d) on the domain
boundary @X, the Gauss theorem for the discrete case can be used to characterize the range of the system matrix C. For
any set of values p0a, a 2 �P, on the coarse grid we obtain
X
a2�P

X
c2�P

p0cCac ¼
X
a2�P

X
c2�P

p0c

Z
Xa

@

@xj
k
@Uc

@xj

 !
dV ¼

X
c2�P

p0c

Z
X

@

@xj
k
@Uc

@xj

 !
dV ¼

X
c2�P

p0c

Z
@X

k
@Uc

@xj
njdS ¼ 0; ð31Þ
which immediately provides the necessary condition
X
a2�P

Qa ¼
X
a2�P

�
Z

Xa

@

@xj
k
@W
@xj

� �
dV þ

Z
Xa

RdV

" #
¼ 0 ð32Þ
for the solvability of the system (30). Eq. (32) however is implied by the solvability condition (21), and therefore by Eq. (5) in
the Navier–Stokes context, since the correction function W fulfills Eq. (28c). Under the assumption that rankðCÞ ¼ Nc � 1, we
can therefore conclude that the coarse system (30) is always solvable, if Eq. (21) is verified.

3.2. Modifications of the IMSFV procedure

Two reasons are responsible for the bad performance of the IMSFV procedure, when k approaches zero in portions of X.
First, the sensitivity of the iterative procedure with respect to the approximations introduced to derive localized problems
for basis and correction functions increases. Second, the condition of the coarse system worsens. Both problems are dis-
cussed hereafter and modifications to the IMSFV algorithm are introduced to remove them.

The proof of solvability for the localized problems defining basis and correction functions fails in presence of imperme-
able regions, if portions of dual-cell edges lie in the permeable domain but are disconnected from the respective corners due
to the presence of impermeable cells (Fig. 5). As highlighted in Section 3.1, the solution for basis and correction functions
along such edges is governed by 1-d elliptic problems, which in the specific case may be restricted to edge-segments lying
in the permeable domain, with homogeneous Neumann conditions (no-flow) at the boundary to the impermeable regions.
While the right-hand side of the 1-d problems for the basis functions is homogeneous, that for the correction function is not
and might be incompatible with the Neumann conditions, in which case no solution can be found. This is the limit case, but
when k approaches zero within nearly impermeable regions, correction and basis functions become increasingly sensitive to
the approximations leading to the 1-d elliptic problems. The quality of Ua and W worsens correspondingly and the conver-
gence behaviour of the iterative procedure is negatively affected. Analogous problems may also appear, if disconnected per-
meable regions with no connection to the edges are given on dual-cell faces.

Low values of k may also affect the condition number of the coarse system, when coarse-grid nodes a 2 �P lie within the
low-permeability region, but portions of the corresponding coarse cells Xa do not. Fluxes k@Ua=@xj induced by the basis func-
tion Ua decrease proportionally to the value, say klow, of k inside the low-permeability region (Fig. 6). Correspondingly, also



Fig. 5. Disconnected portion of dual-cell edge. Dashed lines are fine-cell boundaries, the solid line is the boundary of the dual cell. Impermeable regions are
shaded.
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entries Cc;a; c 2 P, of the coarse-system matrix C tend to zero ðCc;a � k@Ua=@xj � OðklowÞÞ. At the same time, contributions of
neighbouring cells b 2 �P; b–a, to the flux balance for Xa do not have to decrease in the same measure. Coefficients differing
by several orders of magnitude appear in the matrix C, thus enhancing the sensitivity of the system to numerical cancella-
tion. In the limit, when k becomes zero, the rank of C decreases by the number of coarse-grid nodes lying within the imper-
meable region.

The following modifications have been introduced into the IMSFV procedure in order to remove the difficulties discussed
above:

(1) The correction function W is either fully discarded or its restriction to each dual cell eXa is computed by replacing Eq.
(28a) at edge nodes c 2 Ba ¼ c 2 ~Pa : Ba;c–;

n o
with more robust Dirichlet conditions.

(2) A clipped permeability field k̂ ¼ maxfk; K̂g; K̂ > 0 is employed in place of k to compute the basis functions (i.e. in
(27d) but not in (30)).

(3) The iterative procedure is reimplemented as a residuum-correction scheme using the IMSFV step as a preconditioner.

Correspondingly, the following algorithmic steps are carried out in the modified IMSFV procedure to proceed from p½n� to
p½nþ1�:

i. Compute the residuum r½n� in the fulfillment of Eq. (19) for the approximate solution p½n�.
ii. Compute the correction function dW by solving Eq. ()(28) on each dual cell eXa with dW and r½n� in place of W and R,

respectively. Consider thereby homogeneous Neumann conditions on @X and replace Eq. (28a) at nodes c 2 Ba with
the homogeneous Dirichlet condition
Fig. 6. Isocontours of 2-d basis function Ua (top) and fluxes k@Ua=@xj (bottom): no impermeable region (a), node a lies outside impermeable region (b),
node a lies inside impermeable region (c). Dashed and solid black lines are the boundaries of dual and coarse cells, respectively. The node a is marked by a
black dot and impermeable regions by thick gray lines. The permeability within the impermeable region is k ¼ 10�3. Fluxes in (c) are upscaled by factor 103.
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ðdWÞc ¼ 0; 8c 2 Ba: ð33Þ
iii. Compute the coarse-grid correction dp0a;a 2 �P, solving the coarse system (30) with dp0a; dW and r½n� in place of p0a;W
and R, respectively. Also replace Ua with basis functions Ûa computed considering the clipped permeability field k̂.

iv. Reconstruct the fine-scale solution and apply line relaxation:
p0 ¼ p½n� þ
X
a2�P

dp½n�a Ûa þ dW; ð34aÞ

p½nþ1� ¼ Sns ðp0Þ: ð34bÞ
Two main elements contribute to ensure convergence and efficiency of the IMSFV procedure. They are already present in the
original version but become even more evident in the modified one. First, the coarse system (30) enforces the global coupling
throughout the integration domain. Second, local refinement of the solution, achieved by line-relaxation and through the
computation of the correction function W, enforces convergence at the fine-grid level. Indeed, the computation of W with
the boundary condition (33) can be interpreted as a domain-decomposition-based relaxation step and becomes conceptually
equivalent to the line-relaxation step.

The correction-residuum formulation used in the modified procedure allows for more flexibility in the definition of cor-
rection and basis functions, which according to Eq. (34a) are only used to represent the incremental correction term and not
the full solution as in (26a). Thanks to that, basis functions computed for a modified permeability field and the correction
function considering the robust boundary condition (33) can be used without renouncing fine-grid convergence. Indeed,
the correction function may even be discarded, in which case local adaptation to the fine-grid features of permeability
and source terms is enforced solely by line relaxation (in contrast, line relaxation can not be easily removed due to its impor-
tance to ensure the stability of the procedure [1]).

Analogies between the IMSFV procedure and a two-stage multi-grid method [1] are even more evident for the modified
version presented above. Basis functions represent thereby the key element to define both the restriction and the prolonga-
tion operators. The fact that basis functions provide an excellent tool to formulate the coarse-grid problem taking into ac-
count the fine-grid features of the permeability field is indeed the basic idea of multi-scale approaches [2]. In addition,
we point out their suitability for reconstructing the fine-grid solution according to Eq. (34a). Also there, basis functions ac-
count for fine-grid features of the permeability, thus minimizing the interference between global step and local refinement
(e.g. they do not induce fluxes through impermeable regions, cf. Fig. 6(b)). Furthermore, the prolongation operator correctly
maps the null space of the coarse system problem onto the null space of the fine-grid problem (in both cases the subspaces of
the constant functions, see Section 3.1). This is a necessary prerequisite, since null-space elements are left undetermined by
the coarse-grid problem and would corrupt the solution, if not mapped into the null-space of the fine-grid problem. All po-
sitive features of the basis functions are preserved, when they are defined considering a clipped permeability field k̂ with a
proper choice of the lower bound K̂.

Under the assumption that k can become arbitrarily small but not zero, the following conclusions can be drawn about the
solvability and the condition number of the modified IMSFV procedure. Fine-scale problems for basis and correction func-
tions are always diagonally dominant and therefore well conditioned, if the inhomogeneous terms R and q in Eq. (19)
may be assumed to be everywhere at most of the same order of magnitude as the local permeability (no large sources within
impermeable regions). Equations for nodes in the permeable and impermeable regions then differ by a scaling factor propor-
tional to the local permeability, but are equally uncritical from a numerical point of view, if a floating point representation is
used for real numbers. Difficulties arising in connection with 1-d or 2-d problems on disconnected dual-cell edges or faces
have been removed by setting condition (33) for the correction function and by considering the clipped permeability field k̂
for the basis functions. Finally, the solvability of the coarse-grid problem can be inferred from the discussion of Section 3.1,
considering that the lower bound K̂ for the clipped permeability field k̂ defining the basis functions can always be chosen
(but in praxis this is usually not necessary) in such a way that variations of k̂ within the integration domain are arbitrarily
small. Numerical evidence on this subject is provided in Section 4.1.

3.3. Combined iteration for the IMSFV procedure and IIM

We conclude the presentation of the Navier–Stokes solver with IIM capabilities by describing the procedure used to en-
force Eq. (18) at immersed boundaries by means of iterative recomputation of the extrapolated velocities uðlþ1Þ

i;a at the ghost-
nodes a 2 I i;P . The iterative update of uðlþ1Þ

i;a is thereby integrated into the IMSFV loop, thus avoiding the implementation of
additional loops and preserving good convergence rates also for the combined problem. The following algorithmic steps are
considered to advance the velocity field from uðlÞ to uðlþ1Þ:

i. Integrate the momentum Eq. (11) to evaluate uðlþ1Þ
i;b at nodes b involved in the extrapolation stencils defining uðlþ1Þ

i;a at
a 2 I i;P . Consider the pressure from the previous time step to evaluate the pressure gradient in Eq. (11).

ii. Compute uðlþ1Þ
i;a ;a 2 I i;P , by extrapolation.

iii. Compute the right-hand side R of Eq. (19a), which depends