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The iterative-multi-scale-finite-volume (IMSFV) procedure is applied as an efficient solver
for the pressure Poisson equation arising in numerical methods for the simulation of
incompressible flows with the immersed-interface method (IIM). Motivated by the
requirements of the specific IM implementation, a modified version of the IMSFV algo-
rithm is presented to allow the solution of problems, in which the varying coefficient of
the elliptic equation (e.g. the permeability of the medium in the context of the simulation
of flows in porous media) varies over several orders of magnitude or even becomes zero
within the integration domain. Furthermore, a strategy is proposed to incorporate the iter-
ative procedure needed by the IIM to converge out constraints at immersed boundaries
into the iterative IMSFV cycle. No significant deterioration of performance of the IMSFV
method is observed with respect to cases, in which no iterative improvement of the bound-
ary conditions is considered.

Immersed interface © 2009 Elsevier Inc. All rights reserved.

1. Introduction

The IMSFV procedure by Hajibeygi et al. [1] was developed in the context of the simulation of flows in porous media for
the solution of the elliptic problem
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where p, 1 and R are the pressure, the permeability of the medium and a distributed mass source, respectively (we use the
Einstein convention for summation over repeated indices). If / varies rapidly in space and spans a wide range of values,
numerical handling of Eq. (1) becomes challenging.

The origin of the IMSFV method traces back to the work by Hou and Wu [2] in the Finite-Element context (multi-scale-fi-
nite-element, MSFE). Exploiting expected scale-separation features in the permeability field, only large scales of the solution
are resolved on a correspondingly coarse grid, while fine scale features of the i-field are accounted for in the definition of the
basis functions for the finite-element approach. The latter are computed as well resolved numerical solutions of the original
elliptic problem on small subdomains with properly approximated boundary conditions. Jenny et al. [3] preserved the basis-
function concept but considered a finite-volume discretization (multi-scale-finite-volume, MSFV), whereby the derivation of
the coarse-grid problem can still be interpreted as a weak non-Galerkin formulation of the governing equation. Continuing
this work Lunati and Jenny [4] reconstructed the fine-grid solution superposing not only basis functions but also a second
set of locally defined functions (correction functions), which account for the fine-scale features of non-homogeneities (i.e.
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source terms and non-homogeneous boundary conditions). In a further step, a divergence-free vector field is computed to
approximate the Darcy velocity u; = —/.0p/0x; (conservative flow field).

The idea of improving the solution iteratively was introduced by Durlofwsky et al. [5] in a formulation similar to that by
Jenny et al. [3]. Before starting a new iteration, a fine-scale solution is reconstructed and used to define improved boundary
conditions for a new set of basis functions. This leads to an improvement in the results, but convergence at the fine-grid level
is not achieved. Following an alternative approach, Hajibeygi et al. [1] proposed the iterative-multi-scale-finite-volume
(IMSFV) procedure as a generalization of the MSFV method. The fine scale solution is reconstructed by superimposing both
basis and correction functions and used to iteratively improve the approximate boundary conditions for the latter. In addi-
tion line relaxation is applied to smooth the fine-grid solution, which is determinant to ensure stability and enhance con-
vergence. Fast convergence to the exact fine-grid solution was achieved for a variety of problems, but performance decay
was observed for cases in which the permeability varies over several orders of magnitude (e.g. the SPE10 test case in [1]).

The IIM approach by LeVeque and Li [6] can be interpreted as a refinement of the immersed-boundary method (IBM) de-
vised by Peskin [7] for the simulation of incompressible flows around complex geometries using Cartesian grids. In IBM the
influence of the immersed body is modeled by means of concentrated volume forces enforcing boundary conditions at the
body surface. Successive improvements in the definition of the volume force were introduced by Goldstein et al. [8] and Fad-
lun et al. [9], whereby the latter are able to exactly enforce no-slip conditions for the velocity at solid walls. LeVeque and Li
[6] observed that discontinuities in the flow quantities or in their derivatives necessarily occur across immersed boundaries
and should be accounted for when defining discretization stencils crossing them. This led to the development of the IIM, for
which one possible implementation in the Navier-Stokes context was provided by Linnick and Fasel [10] using finite differ-
ences for spatial discretization. Jumps across immersed boundaries are computed by means of one-sided differences and
fourth-order accuracy is achieved for a stream-function-vorticity formulation of the Navier-Stokes equations. Also consis-
tent with the requirements inspiring I[IM is the primitive-variable approach by Peller et al. [11], where values for the velocity
vector are extrapolated from nodes lying inside the flow field to nodes within the solid body, which are involved in stencils
crossing the boundary (ghost nodes). In this way, the solution is smoothly prolonged into the body and no additional cor-
rection is needed for the considered second-order finite-volume discretization.

All IIM approaches, and also the procedure by Fadlun et al. [9], disrupt the regular structure of the Poisson problem to be
solved either for the stream-function in [10] or for the pressure in all remaining procedures. This is a relevant issue, since the
solution of the Poisson equation is by far the most costly step in all numerical procedures for incompressible flows, and the
possibility of using highly efficient solvers on simple Cartesian grids might be one of the main advantages of IBM and IIM
with respect to other approaches. Nevertheless little is said on this topic in the available literature. Fadlun et al. [9] suppress
anomalies in the Poisson equation by tolerating a small additional error within the fractional-step method, which they use
for time integration. Peller et al. [11] and Linnick and Fasel [10] use a single-grid SIP-method and an ILLU-based multi-grid,
respectively. In both cases the preconditioner used to compute the pressure correction (or the stream-function correction)
only considers a standard form of the Poisson equation, ignoring the presence of immersed bodies. Convergence to the solu-
tion fulfilling the boundary conditions at immersed boundaries is achieved over an iteration loop with alternating compu-
tation of pressure and velocity (or vorticity and stream function).

The main concern of this paper is to show that the IMSFV procedure can be adapted to efficiently solve the pressure Pois-
son equation as resulting from the IIM formulation by Peller et al. [11], which we prefer since it is not limited to the 2-d case
like that by Linnick and Fasel [10]. Differently from previously used Poisson solvers, IMSFV provides a preconditioner, which
approximatively accounts for boundary conditions at immersed boundaries. An iterative update of the velocity in the neigh-
bourhood of the immersed boundary is still necessary, but the overall performance of procedure is significantly improved.
Indeed, the importance of imposing accurate boundary conditions when computing the pressure correction within iterative
procedures has been pointed out also by Mark and van Wachem [12].

The paper is structured as follows. The finite-volume discretization of the Navier-Stokes equations is presented in
Section 2, where also the IIM implementation of immersed boundaries is described. We start Section 3 with showing that,
if an iterative loop is introduced to evaluate velocities at ghost nodes, the Poisson equation for the pressure may be reduced
to an elliptic problem of the kind (1), where immersed bodies appear as impermeable regions. The original IMSFV procedure
and the modifications needed to handle problems involving impermeable regions are presented in Sections 3.1 and 3.2,
respectively. Section 3.3 describes how the IMSFV method may be combined with the iterative handling at ghost nodes. Re-
sults from numerical tests are presented in Section 4 and concluding remarks are given in Section 5. Since the considered
Navier-Stokes application requires high accuracy in the solution of the pressure equation, only the linear-solver capabilities
of the IMSFV procedure is considered in this paper. Its capability of providing good approximations of the solution after one
single iteration is not discussed.

2. Discretization of the Navier-Stokes equations

The numerical procedure is based on a primitive-variable formulation of the incompressible Navier-Stokes equations
with finite-volume discretization on staggered grids [13]. The standard fourth-order Runge-Kutta scheme is used for
time-integration and the immersed-boundary implementation reproduces that by Peller et al. [11]. We first present the dis-
cretized problem ignoring immersed boundaries, and then detail the implementation of the latter.



4570 G. Bonfigli, P. Jenny /Journal of Computational Physics 228 (2009) 4568-4587
2.1. Governing equations and grid definition
Let x = (X1 X2 z3)" € R? be the coordinate vector in a 3-d Cartesian coordinate system and u = (ur Uz U3)T € R® the velocity
in the same reference system.We consider the rectangular integration domain
Q={x:a<x;<b}, 1=1,2,3; a,beR (2)

and allow an arbitrarily shaped open portion Q, C Q to be occupied by solid immersed bodies. The flow field has to be com-
puted only within the region Q; = Q\ (2, U 9Q;), which is assumed to be simply connected. The notation 92 is used here
and in the following to identify the boundary of a set Q.

The discrete problem is derived from the momentum equation in conservative form

% 8u,vuj 6‘p 1 6u,

ot o ~ox +Re 0K, Vt, Vxe Q, i=1,2,3 (3a)
and the continuity equation

ou;

i 0, Vt, Vxe Q. (3b)
Dirichlet boundary conditions

up=1; Vi, VXe€dQ=0QuUoQ, i=1,2,3 (4)

are imposed at outer and inner boundaries, ii; being prescribed functions, which fulfill the compatibility condition
/ undS =0, Vt, ©))
0QUILy

where n is the unit outwards-pointing normal on 9Q U dQ,. An extrapolation procedure may also be applied at outflow
boundaries to evaluate the value of #; on the basis of the solution at the previous time step.
Given the grid spacing h; = (b; — a;)/N;, N; € N, the index triplet oo = (0, 02, 3), o = 11;/2 for some n; € 7, identifies the
grid node located at
X= &g = (O(lh] O(zhz a3h3)T (6)

and all quantities evaluated at that node (e.g. p, stands for the pressure at x, while u;, is the ith velocity component at the
same position). Sum and multiplication by a scalar are defined for index triplets analogously to the vector-space operations
in ®® and a partial order is given by setting o < §, if o; < f; Vi. We also define the triplets

1 N 1 1
5 = <§, 0, 0>, - (o, 3 0>, 5 = (0, 0, 5>.

A set G of triplets is said to be a grid, if the following properties are fulfilled: (i) x, € (QU 8Q), Vo € G; (ii) if &, f € G and
(y; =9 VY, =), Vj then y € G. The boundary set 9G is the set of triplets identifying the projections of nodes of G onto
the boundary 6Q.

The pressure p and the velocity components u; are defined on the staggered grids P and U; U dU;, respectively, with

Pz{g:ogeZJr V],xaeQ} (7a)
ui:{g:oc,ez ocjeZ+ , V)i, xer} (7b)

The relative position of grid nodes for p and u; in the 2-d case is sketched in Fig. 1. The control volume or cell Q, associated to
the node o is defined as the rectangular domain

Q, = {&: <O€j*%)hj<)(j< (OCj*F%)hj, Vj}ﬁg. (8)
The symbols V(Q,) and A,; denote the volume of Q, and the area of its face normal to the x;-axis, respectively.
2.2. Finite-volume discretization

Partial derivatives at nodes lying in the inner of the integration domain are evaluated by means of the second-order cen-
tral finite-difference scheme

<37f> Sy hjfs« 5 o

an o
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Fig. 1. Staggered grids for p (circle) u; (horizontal arrows) and u, (vertical arrows).

Volume integrals over cells Q, and surface integrals over cell faces S are defined as
[ v =r.v( e [ JS =iy (10)

where k is the direction normal to S and g is the centroid of S. Due to the additivity of the integral this defines integral over
arbitrary unions of cells and faces. We also point out that, for the given definitions of discrete derivation and integration, the
Gauss theorem continues to be valid also in the discrete case. Consequently the solvability condition (5) preserves its mean-
ing also for the discretized problem, if the integral on the left-hand side is interpreted according to Eq. (10) and 9Q U 09, is
assumed to be equal to the boundary of Uyep, (24 U 9Q,).

The discretized form of the Navier-Stokes equations is presented considering the explicit Euler scheme for time integra-
tion. Generalization to the Runge-Kutta scheme is straightforward. Let At > 0 be the time step and let the superscript (I)
identify quantities evaluated at the time t = [ - At. Eq. (3a) can be written in discretized form as

(I+1) [0}
Uy, — Uy
where P, X;, and Y;, represent the contributions of the pressure gradient, of the convective term and of the viscous term,
respectively, to the momentum balance in the cell Q,. The Dirichlet condition (4) assumes the form

u(lﬂ)

1,00

=ul", Vaeau, (12)

whereby the values u 1) may be slightly modified on some portion of 9 (typically at the outflow) in order to fulfill the dis-

crete counterpart of the compatibility condition (5). We omit the time-step superscript, indicate with n the outwards-point-
ing normal at the cell boundaries and set

Piu= [ pmdS = (pyus =Py o) (13a)
Xiz = / | UydS = (UigigUjzeg — Uig-gUiz-o) A (13b)
99,

1 ou; 1 | /ou; ou;
Yig = — —ndS =— (—’) - (—') Ajy 13¢
7 Joo, Re 0x; 7 Re{ )y \OX)ys| " (13¢)

The evaluation of P;, is straightforward, since (x + ;) € P whenever « € U;. Second-order central interpolation is used to
evaluate both the convecting velocity u; and the convected component u; at X,., as appearing in X;,:
Ujgasies, + Ujgss s Ui ges s, + Uigws—s:
ey, = j oredy o, ‘; izt y ey, = i g0+ ‘2F iy (14)
Finally, partial derivatives in Y;, are computed according to Eq. (9), except at nodes on 99, where second-order skew differ-
ences are used. Second order accuracy is thus granted by the discretization of all terms. If needed, e.g. for higher Reynolds
numbers, upwinding [14] mlght be introduced in the discretization of the convective term X;,.

A system of equations for p“ is derived imposing the continuity Eq. (3b) in discrete form at all nodes ¢ € P for the time
step (I + 1). In this sense p ) is rather a Lagrangian multiplier for the problem (3a) constrained by (3b) than an estimation of
the actual physical pressure, from which it differs by terms of first order in At [15,16]. The finite-volume formulation of
Eq. (3b) provides

3.0+ .o 3i

/ u"Vnds = ( D gy )Aj_[x =0, VaeP. (15)
0y J -
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Since o + §; € U; U 6U; whenever o € P, we may eliminate u”jilg in (15) by means of Egs. (11) and (12), obtaining the desired
set of equations:

U] ) 0 (0]
?p\ 1 ax\" oy, 1 (9y
(ax,.ax,.) V@) [(a—& (@), o), veer 162
o - o 2
S =)
ap . 1 Uy — Uy
<87k> =V X, + Y| =22, vaeop, (16b)

where x, is the direction normal to the boundary at each point o € 9P and the values uk , and u,’+1 in (16b) are the assigned

right-hand side of Eq. (12). The derivatives (9p/dx;), on the left-hand side of (16a) can be evaluated according to Eq. (9) for all
a € (P+4)\ OP. Since furthermore their values at nodes ¢ € 9P in the boundary-normal direction x, are assigned by Eq.
(16b), the second derivatives (9°p /0%;0%;),, can be computed for o € P, by applying the discrete derivative operator a second
time.

The terms X , and Y » &€ 9P, in Eq. (16) are to some extent fictive. They do not appear in Eqs. (11) or (12) and cancel
out with the correspondmg terms in the derivatives of X; and Y; on the right-hand side of (16a) as soon as Eq. (16b) is used to
eliminate dp/dx; at boundary points « € 9P from the Laplac1an on the left-hand side of (16a). They have been introduced
only to preserve the standard form of Eq. (16a) also at nodes close to the boundary, and may as well be assumed to be zero.
That being said, we notice that the system (16) is equivalent to a discretized Poisson problem with Neumann boundary con-
ditions. It is singular and admits solutions, which are then determined up to an additive constant, if and only if the discrete
counterpart of Eq. (5) is fulfilled. Second order accuracy with respect to the spatial discretization is achieved for the momen-
tum equation.

2.3. Immersed-boundary implementation

Immersed boundaries are implemented as in the [IM approach by Peller et al. [11] by extrapolating the velocity to ghost
nodes inside the body. This is done using fourth-order extrapolation stencils, which take into account the Dirichlet condition
(4) on 9Q, and values of u; at three further grid nodes in the flow field. For stability reasons the point next to the boundary
may be skipped, if it is too close to the boundary.

We define subsets of the grids P and ¢;, which are needed to detail the different treatment of nodes inside and outside of
the solid bodies:

Pr={aeP: xs € (Q U}, (17a)
Py =P\ Py, (17b)
L{,-f:{geui: ggle}, (17C)
Uip = Ui \ Uiy, (17d)
Tip={o€U;: Iv e {£1} with (a+ V&) € Py A (2 — Vd;) € Py}, (17e)
Tiv = {0 € Uip : Jj,3v € {£1} with (a+2v5;) € Uiy} (17f)

The momentum Eq. (11) is evaluated only at nodes « € U;y \ Z;p within the flow field. Nodes o € Z; lie within the solid body
but are needed to evaluate the right-hand side of the momentum Eq. (11) (hence the notation Z;;) at some node in Uis \ Z;p
(cf. Fig. 2). On the other hand, nodes « € Z;p are involved in the evaluation of the continuity equation, i.e. of the pressure
Poisson Eq. (16b) (hence the notation Z;p), which they enter through the boundary condition at immersed boundaries
(see Eq. (18) below). Nodes « € Z;p may lie either within the body or within the flow region (cf. Fig. 3). However, also in
the latter case, interpolation is used to evaluate u;, in place of imposing (11), since no pressure node is available on the side
of o occupied by the body and the computation of the pressure gradient would be numerically critical. The sets Z;p and Z;y
are in general not disjoint.

As a general rule, u; is extrapolated along the grid line on which the stencil requiring it operates, e.g. in direction x; for the
finite-difference stencil in (9) or in direction x; and x; for the first and second interpolation stencils in (14), respectively (see
Figs. 2(a)-(c) and 3). If this is not possible, extrapolation in direction x;, parallel to the extrapolated velocity component u;, is
used (see Fig. 2(d)). Since nodes in & € Z;p are needed in connection with the computation of the derivative du;/9x; from the
continuity equation, the extrapolation direction at such nodes is always x;, without exceptions.

The discrete Poisson Eq. (16a) for the pressure is imposed only at nodes o € Py, while the boundary conditions

uHn 0

ap o 1 ) 1 i0 Uiy
(&) = g X+ Y] - gt vaeTi (18)
i/ o o

are set to take account of immersed boundaries. Also here values X and Y ,, are fictive and cancel out as soon as Eq. (18) is
used to eliminate the pressure gradient in o € Z;p from the Laplac1an in Eq. (1 6a). The term u““ on the right-hand side of Eq.
(18) has to be evaluated by extrapolation on the basis of some u l“ ) at neighbouring nodes ﬁ € Uiz, which in turn depend on
the solution for p through the momentum Eq. (11). If directly enforced Eq. (18) would massively modify the structure of
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Fig. 2. Relative positions of immersed boundaries and ghost nodes f € Z;y (filled circle). The evaluation of the momentum equation for u; in o (cross)
requires the value of u; at f to evaluate the same quantity (or its derivative) in y (empty circle). Squares correspond to nodes included in the extrapolation
stencil. Empty squares are nodes in Uy, filled squares are boundary values assigned by (4).
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Fig. 3. Relative positions of immersed boundaries and ghost nodes f € Z;p (filled circle). The evaluation of the pressure Poisson equation in o (cross)
requires the value of u; at . Squares correspond to nodes included in the extrapolation stencil. Empty squares are nodes in Uy, filled squares are boundary
values assigned by (4).

the linear system (16), making impossible the application of the IMSFV procedure, or of any other standard solver. Therefore,
ufl; U is rather shifted to the right-hand side of the system, i.e. it is first evaluated approximatively and then improved iter-
atively (Section 3.3).

3. Computation of the pressure field with the IMSFV procedure

The linear system (16) for the discrete pressure-Poisson equation with the additional constraint (18) at immersed bound-
aries can be restated in the form

o (,op\1"

{8_99 <28—XJ>L =R,, VaeP, (19a)
. p U]

(/La—xk>z = qZ v@ (S 67’, (19b)

with

(20)

|1, for peUis\Tip,
L7100, for p ety UTip.

Thereby, the term R, is zero for « € P, and equal to the right-hand side of Eq. (16) for the nodes a € Py which are not neigh-
bours of nodes in Z;p. If on the contrary o € Py and f = (& + J;) € Z;p or § = (& — J;) € Z;p, then R, also contains the contri-
bution of the gradient (9p/0dx;),, assigned by Eq. (18), to the Laplacian of p on the left-hand side of Eq. (16) (remember that
g}f“’ in Eq. (18) is treated iteratively and notice that the mentioned contribution does not appear on the left-hand side of Eq.
(19a), since 2; = 0 for f € Z;p). Eq. (19b) is simply a restatement of the Neumann condition (16b) at the outer boundaries of
the integration domain and the solvability condition for the system (19) is
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/ RAV = / qds, (21)
Q aQ

which is true up to discretization errors if Eq. (5) is verified. We point out that boundary conditions at immersed boundaries
are correctly accounted for in (19) but enter the system only through the coefficients 4 and the right-hand side R.

The reformulation (19) of the discrete pressure Poisson equation highlights its analogy to the Eq. (1) governing flows in
porous media, for the solution of which the IMSFV procedure [1] has been developed. In the rest of this section, we first pres-
ent the original IMSFV procedure, then introduce the modifications needed to handle problems in which the permeability
becomes zero as in (19) and (20) (impermeable regions) and finally discuss how the iterative enforcement of the boundary
condition (18) can be efficiently integrated into the iterative loop of the IMSFV procedure. We skip the so called conservative
reconstruction from the original IMSFV implementation [3,4,1], since it looses relevance if the iterative procedure is well
converged. For technical reasons, we also slightly modify the problem setting 7, = 4, > 0, Y& € U;, UZ;p, in Eq. (20) and
choosing the constant A, to be smaller than machine accuracy (typically 4, = 1072°). The time index (I) is omitted in this
section and superscripts [n] in square brackets are used to identify the solution after n iteration steps.

3.1. The IMSFV procedure

Additional grids and partitions of the integration domain into subdomains (coarse and dual cells) have to be introduced in
order to implement the IMSFV procedure. We define the following terminology. Two triplets ¢ and g belonging to the same
grid G are said to be diagonally opposed if & < fand g < y forall y € Gwitha < y. Asubset of G, which is itself a grid, is said to
be a subgrid of G. a a a

The coarse grid P and the dual grid P (see Fig. 4) are subgrids of P and

O={o: 4eZVj x,€Q}, (22)

respectively, whereby P contains its boundary. Let also P be the smallest grid containing 7 U dP. Dual and coarse grids are
staggered with respect to each other, i.e. if &, %, € P are diagonally opposite and o; < o, then there exists exactly one pe P,
so that &y < f < &. In general, except when f € AP, strict inequality holds and X, is close to or coincident with the midpoint
between x,, and x,,. Analogously, if o, 2, € P are diagonally opposite and o < o,, there exists exactly one § € P, so that
oy < f < op. The original grid P will also be referred to as fine grid. B

Let oy, o, € P be diagonally opposite, with a; < o, and let  be the unique element of P satisfying o; < f§ < o, then the
coarse cell Qy is defined as B B
o5,- U o (23)

VEP <)<t
Analogously, the dual cell Ezﬁ is given by
%= U @ (24)

VEPU <)<ty

)

Fig. 4. (a) Coarse (solid lines) and dual grid (dashed lines); bold lines highlight the coarse cell Q, (solid) and the dual cell Q/f (dashed). Nodes in P are
marked by crosses, nodes in P by circles; (b) enlargement of the corner region of coarse (top) and dual cells (bottom). Thin lines mark the boundaries of fine-
grid cells, thick lines the boundaries of coarse and dual cells, respectively. Notice the overlapping of the dual cells in the lower picture. Nodes in P are the
fine-grid-cell centroids.
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where o, 0, € P are diagonally opposite and g is the only element of P with o; < 8 < %. Notice that different coarse cells
share at most faces of their boundary. On the contrary, dual cells share fine-grid cells adjacent to common corners, edges and
faces.

Local grids P, and P, and their boundary sets 9P, and 9P, are defined for coarse and dual cells @, and Q, as P and 9P for
the integration domain_ Q. For example, P, is the set of elements of 7 contained in the coarse cell
ﬁg(ﬁz = fﬁ eP: C ﬁz}), while 875g contains the projection of elements of 73Z onto its faces. Finally, for o € P and
p € Py, we define

Buy = {j: 3v € (1} with [(8+2vs)) ¢ Pu] A[(+2v9)) € PI}. (25)

The set B, is empty for nodes f € P,, which are not adjacent to the boundary 9, of the dual cell 2,, and contains the indi-
ces j of the directions normal to the adjacent dual-cell faces otherwise. As an exception, the direction j is not contained in B, 4,
if the cell face normal to it lies on 9Q. -

The solution p™*1 after n + 1 iteration steps is obtained by superposing the basis functions ®,, & € P, and the correction
function ¥, and applying the line-relaxation operator S a prescribed number n; of times':

P=> 0P+ Y, (26a)

aeP

pm=S"(p'), (26b)

Basis functions @, are zero outside of the eight dual cells (4 in 2-d) sharing the node « € P as a corner and are computed only
once before starting the actual computation. On the contrary, the correction function and the coefficients p/, have to be
recomputed at each iteration step. h

Each basis function @,, o € P, is computed by solving independent problems on each of the dual cells forming its support.
Let Q/; pe P, be contamed in the support of @,. The restriction of @, to Q,; is then determined by

9 [ 0D\] B
Z [379 </1 ax,»ﬂ = 0, YyePs\P, (27a)
JeBg,y v
(#2),=0, Vye PyNP, y#a, (27b)
(Py), =1, y=0, (27¢)

@ N
(za 1) =0, VyecdP;naP, (27d)
8Xk y - -

where BC ={1,2,3}\ By, and k in Eq. (27d) is the direction normal to 992 at the corresponding boundary node. Similarly, the
restrlctlon of the correction function ¥ to the any dual cell Q,,a € P, is determined by

5 ()], 2 [ (5] i\
— A= + — 4 =R,, VyeP,\P, (28a)
J;; |:(9Xj (9Xj 7 ];B;‘_ (9Xj 0Xj 7 ? = &
(V),=0, VyePynP, (28b)
PLEA q,, VyeaP,NnoP, (28¢)
OX ; i = =

where B », and k are defined as above. Finally, the coarse-grid problem (coarse system) assigning the coefficients p;,, « € Pin

(26a)_1s derived as a weak formulation of the original problem (19) over each coarse cell by requiring

r?p '

dv = R Vv, 2

'/91 8x,< 8x,> /am 8Jn)d5 dV. Vo € P, (29)
n being the unit outwards-pointing normal vector on 0,. Substituting the ansatz (26a) into Eq. (29) one obtains
843,5 0 _

Sp, / ( >dv -/ <; —> v+ [ RV, vacP. (30)
S ax; \" ox; g, 0%\ 0K %

Cyy Q

Eqgs. (27a) and (28a) enforce the Poisson equation (respectively in its homogeneous and inhomogeneous form) exactly in the
inner part of each dual cell, but only approximatively at nodes adjacent to dual-cell faces not lying on 9Q. At such nodes,
derivatives normal to the dual-cell boundary are ignored (Eq. (27a)) or estimated a priori on the basis of the last available

1 We slightly deviate from the notation used in [1], where @, and ¥ are expressed as superposition of their restrictions to dual cells.
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iteration step (Eq. (28a)). This way, coupling between different dual cells is suppressed, and localization of the problems for
@, and ¥ is achieved. On the other hand, the coarse system (30) provides the global coupling needed to avoid performance
decay when the dimensions of the problem are increased. Indeed, as highlighted by Hajibeygi et al. [1], the IMSFV procedure
can be interpreted as a two-level multi-grid procedure, whereby restriction (from P to P, Eq. (30)) and prolongation (from P
to P, Eq. (26a)) are carried out by means of the basis functions @,. The relevance of the line relaxation operator S™ in Eq.
(26b) for the stability and the efficiency of the IMSFV procedure has also been demonstrated by Hajibeygi et al. [1].

The unique solvability of each localized problem for basis and correction functions can be inferred as follows, if 10
everywhere in Q. Due to the neglect or approximate estimation of derivatives across the boundary, the solution at node-rows
corresponding to the dual-cell edges is uniquely determined by 1-d elliptic problems along the edge with Dirichlet condi-
tions at the corners. Two-dimensional problems with Dirichlet boundary conditions provided by the previously computed
solution on the edges are then assigned at dual-cell faces and, in turn, provide Dirichlet conditions for the 3-d problems
determining the solution inside each dual cell. Exceptions are given at corners, edges and faces lying on 9, where the ori-
ginal Neumann conditions are set, but this does not compromise the conclusions. Notice that, since the restriction of basis
and correction functions to nodes next to dual-cell edges and faces are always determined by the same 1-d and 2-d prob-
lems, no contradiction is found, even if such nodes are shared by different dual cells and each basis or correction function
is redundantly determined there by different localized problems (one for each dual cell sharing the specific edge or face).

Let now N, be the dimension of the system matrix C = [Cy] for the coarse system (30). If p, =c € R, Vo € P, is the con-
stant distribution on the coarse grid, the corresponding superposition of basis functions according to the first sum on the
right-hand side of Eq. (26a) is constant on the fine grid P and the left-hand side of the coarse system (30) is zero. This shows
that constant distributions on 7P lie in the null space of C and consequently also that rank(C) < N. — 1. If the permeability / is
constant and if coarse cells have moderate aspect ratio, C is diagonally dominant [17] and therefore rank(C) > N. — 1. Con-
tinuity considerations allow then to conclude that the same is true also when / varies moderately. This is the case for the
applications we are interested in, so that in the following we may always assume rank(C) = N. — 1. Numerical evidence pro-
vided by Hajibeygi et al. [1] shows that the same may still be true also for cases with large cell aspect ratios or strongly vary-
ing permeability.

Since each linear combination of basis functions fulfills the homogeneous Neumann conditions (27d) on the domain
boundary 99, the Gauss theorem for the discrete case can be used to characterize the range of the system matrix C. For
any set of values p/, & € P, on the coarse grid we obtain

P =3 3p, / (m)dv Z”/ai,("?ax )av Zpy/ ?;p—njds 0, (31)

aeP yeP aeP yeP y€P

which immediately provides the necessary condition

ZQz_Z{_/K_;x;ijgZ)dV*/%RdV} (32)

aeP aeP

for the solvability of the system (30). Eq. (32) however is implied by the solvability condition (21), and therefore by Eq. (5) in
the Navier-Stokes context, since the correction function ¥ fulfills Eq. (28c). Under the assumption that rank(C) = N. — 1, we
can therefore conclude that the coarse system (30) is always solvable, if Eq. (21) is verified.

3.2. Modifications of the IMSFV procedure

Two reasons are responsible for the bad performance of the IMSFV procedure, when /. approaches zero in portions of Q.
First, the sensitivity of the iterative procedure with respect to the approximations introduced to derive localized problems
for basis and correction functions increases. Second, the condition of the coarse system worsens. Both problems are dis-
cussed hereafter and modifications to the IMSFV algorithm are introduced to remove them.

The proof of solvability for the localized problems defining basis and correction functions fails in presence of imperme-
able regions, if portions of dual-cell edges lie in the permeable domain but are disconnected from the respective corners due
to the presence of impermeable cells (Fig. 5). As highlighted in Section 3.1, the solution for basis and correction functions
along such edges is governed by 1-d elliptic problems, which in the specific case may be restricted to edge-segments lying
in the permeable domain, with homogeneous Neumann conditions (no-flow) at the boundary to the impermeable regions.
While the right-hand side of the 1-d problems for the basis functions is homogeneous, that for the correction function is not
and might be incompatible with the Neumann conditions, in which case no solution can be found. This is the limit case, but
when /. approaches zero within nearly impermeable regions, correction and basis functions become increasingly sensitive to
the approximations leading to the 1-d elliptic problems. The quality of @, and ¥ worsens correspondingly and the conver-
gence behaviour of the iterative procedure is negatively affected. Analogous problems may also appear, if disconnected per-
meable regions with no connection to the edges are given on dual-cell faces.

Low values of 2 may also affect the condition number of the coarse system, when coarse-grid nodes o € P lie within the
low-permeability region, but portions of the corresponding coarse cells Q, do not. Fluxes 109, /9x; induced by the basis func-
tion @, decrease proportionally to the value, say A, of 2 inside the low- permeability region (Fig. 6). Correspondingly, also
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Fig. 5. Disconnected portion of dual-cell edge. Dashed lines are fine-cell boundaries, the solid line is the boundary of the dual cell. Impermeable regions are
shaded.

entries C,,, y € P, of the coarse-system matrix C tend to zero (C,, ~ 20®y/0x; ~ O(Z0w)). At the same time, contributions of
neighbouring cells § € P, f+a, to the flux balance for Q, do not have to decrease in the same measure. Coefficients differing
by several orders of magnitude appear in the matrix C, thus enhancing the sensitivity of the system to numerical cancella-
tion. In the limit, when A becomes zero, the rank of C decreases by the number of coarse-grid nodes lying within the imper-
meable region.

The following modifications have been introduced into the IMSFV procedure in order to remove the difficulties discussed
above:

(1) The correction function ¥ is either fully discarded or its restriction to each dual cell f)z is computed by replacing Eq.
(28a) at edge nodes y € B, = {7 € Py : By,#0 ¢ with more robust Dirichlet conditions.

(2) A clipped permeability field ~ = max{, A}, A > 0 is employed in place of 4 to compute the basis functions (i.e. in
(27d) but not in (30)).

(3) The iterative procedure is reimplemented as a residuum-correction scheme using the IMSFV step as a preconditioner.

Correspondingly, the following algorithmic steps are carried out in the modified IMSFV procedure to proceed from pi" to
pln+il:

i. Compute the residuum r" in the fulfillment of Eq. (19) for the approximate solution p'.

ii. Compute the correction function §¥ by solving Eq. ()(28) on each dual cell flz with §¥ and r™ in place of ¥ and R,
respectively. Consider thereby homogeneous Neumann conditions on 9Q and replace Eq. (28a) at nodes y € B, with
the homogeneous Dirichlet condition B

Do
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Fig. 6. Isocontours of 2-d basis function @, (top) and fluxes 10®,/dx; (bottom): no impermeable region (a), node « lies outside impermeable region (b),
node ¢ lies inside impermeable region (c). Dashed and solid black lines are the boundaries of dual and coarse cells, respectively. The node « is marked by a
black dot and impermeable regions by thick gray lines. The permeability within the impermeable region is 4 = 10~>. Fluxes in (c) are upscaled by factor 10°.
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(6%), =0, Vye€ By (33)

iii. Compute the coarse-grid correction dp;,a € P, solving the coarse system (30) with op,, 0¥ and r" in place of A
and R, respectively. Also replace @, with basis functions @, computed considering the clipped permeability field /.
iv. Reconstruct the fine-scale solution and apply line relaxation:

P =p"+> opid, + ¥, (34a)
aeP
p"l =S"(p'). (34b)

Two main elements contribute to ensure convergence and efficiency of the IMSFV procedure. They are already present in the
original version but become even more evident in the modified one. First, the coarse system (30) enforces the global coupling
throughout the integration domain. Second, local refinement of the solution, achieved by line-relaxation and through the
computation of the correction function ¥, enforces convergence at the fine-grid level. Indeed, the computation of ¥ with
the boundary condition (33) can be interpreted as a domain-decomposition-based relaxation step and becomes conceptually
equivalent to the line-relaxation step.

The correction-residuum formulation used in the modified procedure allows for more flexibility in the definition of cor-
rection and basis functions, which according to Eq. (34a) are only used to represent the incremental correction term and not
the full solution as in (26a). Thanks to that, basis functions computed for a modified permeability field and the correction
function considering the robust boundary condition (33) can be used without renouncing fine-grid convergence. Indeed,
the correction function may even be discarded, in which case local adaptation to the fine-grid features of permeability
and source terms is enforced solely by line relaxation (in contrast, line relaxation can not be easily removed due to its impor-
tance to ensure the stability of the procedure [1]).

Analogies between the IMSFV procedure and a two-stage multi-grid method [1] are even more evident for the modified
version presented above. Basis functions represent thereby the key element to define both the restriction and the prolonga-
tion operators. The fact that basis functions provide an excellent tool to formulate the coarse-grid problem taking into ac-
count the fine-grid features of the permeability field is indeed the basic idea of multi-scale approaches [2]. In addition,
we point out their suitability for reconstructing the fine-grid solution according to Eq. (34a). Also there, basis functions ac-
count for fine-grid features of the permeability, thus minimizing the interference between global step and local refinement
(e.g. they do not induce fluxes through impermeable regions, cf. Fig. 6(b)). Furthermore, the prolongation operator correctly
maps the null space of the coarse system problem onto the null space of the fine-grid problem (in both cases the subspaces of
the constant functions, see Section 3.1). This is a necessary prerequisite, since null-space elements are left undetermined by
the coarse-grid problem and would corrupt the solution, if not mapped into the null-space of the fine-grid problem. All po-
sitive features of the basis functions are preserved, when they are defined considering a clipped permeability field 2 with a
proper choice of the lower bound A.

Under the assumption that 4 can become arbitrarily small but not zero, the following conclusions can be drawn about the
solvability and the condition number of the modified IMSFV procedure. Fine-scale problems for basis and correction func-
tions are always diagonally dominant and therefore well conditioned, if the inhomogeneous terms R and q in Eq. (19)
may be assumed to be everywhere at most of the same order of magnitude as the local permeability (no large sources within
impermeable regions). Equations for nodes in the permeable and impermeable regions then differ by a scaling factor propor-
tional to the local permeability, but are equally un